Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            We demonstrate efficient filtering of coherent light from a broad spectral background. A Michelson interferometer is used to effectively filter out the coherent emission of mid-infrared lasers from the co-propagating incoherent emission of a broadband thermal source. We show coherent light suppression as high as 16.9 dB without any modification of the broadband incoherent background spectrum. In addition, we demonstrate the ability to measure the spatially dependent (incoherent) thermal emission from a patterned surface, using our filter to remove a coherent signal which would otherwise overload our detection system. The demonstrated filter is rapidly tunable and wavelength-flexible, and has potential for imaging and spectroscopy applications in the presence of an otherwise overpowering coherent signal.more » « less
- 
            Plasmonic materials, and their ability to enable strong concentration of optical fields, have offered a tantalizing foundation for the demonstration of sub-diffraction-limit photonic devices. However, practical and scalable plasmonic optoelectronics for real world applications remain elusive. In this work, we present an infrared photodetector leveraging a device architecture consisting of a “designer” epitaxial plasmonic metal integrated with a quantum-engineered detector structure, all in a mature III-V semiconductor material system. Incident light is coupled into surface plasmon-polariton modes at the detector/designer metal interface, and the strong confinement of these modes allows for a sub-diffractive ( ) detector absorber layer thickness, effectively decoupling the detector’s absorption efficiency and dark current. We demonstrate high-performance detectors operating at non-cryogenic temperatures ( ), without sacrificing external quantum efficiency, and superior to well-established and commercially available detectors. This work provides a practical and scalable plasmonic optoelectronic device architecture with real world mid-infrared applications.more » « less
- 
            Highly doped semiconductor “designer metals” have been shown to serve as high-quality plasmonic materials across much of the long-wavelength portion of the mid-infrared. These plasmonic materials benefit from a technologically mature semiconductor fabrication infrastructure and the potential for monolithic integration with electronic and photonic devices. However, accessing the short-wavelength side of the mid-infrared is a challenge for these designer metals. In this work we study the perspectives for extending the plasmonic response of doped semiconductors to shorter wavelengths by leveraging charge confinement, in addition to doping. We demonstrate, theoretically and experimentally, negative permittivity across the technologically vital mid-wave infrared (3–5 m) frequency range. The semiconductor composites presented in our work offer an ideal material platform for monolithic integration with a variety of semiconductor optoelectronic devices operating in the mid-wave infrared.more » « less
- 
            We report on photoluminescence in the 3–7 µm mid-wave infrared (MWIR) range from sub-100 nm strained thin films of rocksalt PbSe(001) grown on GaAs(001) substrates by molecular beam epitaxy. These bare films, grown epitaxially at temperatures below 400 °C, luminesce brightly at room temperature and have minority carrier lifetimes as long as 172 ns. The relatively long lifetimes in PbSe thin films are achievable despite threading dislocation densities exceeding 109 cm−2 arising from island growth on the nearly 8% lattice- and crystal-structure-mismatched GaAs substrate. Using quasi-continuous-wave and time-resolved photoluminescence, we show that the Shockley–Read–Hall recombination is slow in our high dislocation density PbSe films at room temperature, a hallmark of defect tolerance. Power-dependent photoluminescence and high injection excess carrier lifetimes at room temperature suggest that degenerate Auger recombination limits the efficiency of our films, although the Auger recombination rates are significantly lower than equivalent III–V bulk materials and even a bit slower than expectations for bulk PbSe. Consequently, the combined effects of defect tolerance and low Auger recombination rates yield an estimated peak internal quantum efficiency of roughly 30% at room temperature, unparalleled in the MWIR for a severely lattice-mismatched thin film. We anticipate substantial opportunities for improving performance by optimizing crystal growth as well as understanding Auger processes in thin films. These results highlight the unique opportunity to harness the unusual chemical bonding in PbSe and related IV–VI semiconductors for heterogeneously integrated mid-infrared light sources constrained by tight thermal budgets in new device designs.more » « less
- 
            Remarkable systems have been reported recently using the polylithic integration of semiconductor optoelectronic devices and plasmonic materials exhibiting epsilon-near-zero (ENZ) and negative permittivity. In traditional noble metals, the ENZ and plasmonic response is achieved near the metal plasma frequency, limiting plasmonic optoelectronic device design flexibility. Here, we leverage an all-epitaxial approach to monolithically and seamlessly integrate designer plasmonic materials into a quantum dot light emitting diode, leading to a enhancement over an otherwise identical non-plasmonic control sample. The device presented exhibits optical powers comparable, and temperature performance far superior, to commercially available devices.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
